37 research outputs found

    Engineering a light-driven cyanine based molecular rotor to enhance the sensitivity towards a viscous medium.

    Get PDF
    This article describes the enhanced sensitivity to a viscous medium by a molecular rotor based fluorophore (RBF), TPSI I. The TPSI I molecule is designed in such a way that it consists of a rotor and a fluorophore with a p-rich bridge between them. TPSI I is a light-responsive material in solution as well as in the solid state. The structural design of the molecule allows flexible rotation and photo-induced cis-trans isomerization both in the solid state as well as in solution. These combined attributes of TPSI I are responsible for the ultrasensitive viscosity response of the new material, which was verified through the Fo ̈rster-Hoffmann equation. According to this equation, the derived 'x' value is 1.02 (x is related to the sensitivity) which is the highest among the contemporary reports for RBFs. The facts were evidenced both by experimental as well as theoretical data. The ultrasensitivity towards viscosity was further analyzed in in vitro studies by detecting the subtle changes in the alteration of intracellular viscosity in normal and cancerous cells. An alteration of intracellular viscosity in cells treated with viscosity modula- tors was also confirmed using a previously well-established viscosity measurement technique, dynamic measurement through the piezoelectric patch. Our research offers a detailed mechanism to improve viscosity sensors and an efficient probe for detecting minute changes in intracellular viscosity

    Chick Embryo Partial Ischemia Model: A New Approach to Study Ischemia Ex Vivo

    Get PDF
    Background: Ischemia is a pathophysiological condition due to blockade in blood supply to a specific tissue thus damaging the physiological activity of the tissue. Different in vivo models are presently available to study ischemia in heart and other tissues. However, no ex vivo ischemia model has been available to date for routine ischemia research and for faster screening of anti-ischemia drugs. In the present study, we took the opportunity to develop an ex vivo model of partial ischemia using the vascular bed of 4th day incubated chick embryo. Methodology/Principal Findings: Ischemia was created in chick embryo by ligating the right vitelline artery using sterile surgical suture. Hypoxia inducible factor- 1 alpha (HIF-1a), creatine phospho kinase-MB and reactive oxygen species in animal tissues and cells were measured to confirm ischemia in chick embryo. Additionally, ranolazine, N-acetyl cysteine and trimetazidine were administered as an anti-ischemic drug to validate the present model. Results from the present study depicted that blocking blood flow elevates HIF-1a, lipid peroxidation, peroxynitrite level in ischemic vessels while ranolazine administration partially attenuates ischemia driven HIF-1a expression. Endothelial cell incubated on ischemic blood vessels elucidated a higher level of HIF-1a expression with time while ranolazine treatment reduced HIF-1a in ischemic cells. Incubation of caprine heart strip on chick embryo ischemia model depicted an elevated creatine phospho kinase-MB activity under ischemic condition while histology of the treated heart sections evoked edema and disruption of myofibril structures. Conclusions/Significance: The present study concluded that chick embryo partial ischemia model can be used as a novel ex vivo model of ischemia. Therefore, the present model can be used parallel with the known in vivo ischemia models in understanding the mechanistic insight of ischemia development and in evaluating the activity of anti-ischemic drug.status: publishe

    Study of the cellular mechanism of Sunitinib mediated inactivation of activated hepatic stellate cells and its implications in angiogenesis

    No full text
    The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells (HSC). Inhibition of receptor tyrosine kinase (RTK) signaling showed promise in the treatment of hepatocellular carcinoma. However, there is a lack of knowledge about the effects of RTK inhibitors on the tumor supportive cells. We performed in vitro experiments to study whether Sunitinib, a platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) RTKs' inhibitor, could block both activated HSC functions and angiogenesis and thus prevent the progression of cirrhotic liver to hepatocellular carcinoma. In immortalized human activated HSC LX-2, treatment with Sunitinib 100 nM blocked collagen synthesis by 47%, as assessed by Sirius Red staining, attenuated HSC contraction by 65%, and reduced cell migration by 28% as evaluated using a Boyden's chamber, without affecting cell viability, measured by Trypan blue staining, and apoptosis, measured by propidium iodide (PI) incorporation assay. Our data revealed that Sunitinib treatment blocked the transdifferentiation of primary human HSC (hHSC) to activated myofibroblast-like cells by 65% without affecting hHSC apoptosis and migration. In in vitro angiogenic assays, Sunitinib 100 nM reduced endothelial cells (EC) ring formation by 46% and tube formation by 68%, and decreased vascular sprouting in aorta ring assay and angiogenesis in vascular bed of chick embryo. In conclusion, the present study demonstrates that the RTK inhibitor Sunitinib blocks the activation of HSC and angiogenesis suggesting its potential as a drug candidate in pathological conditions like liver fibrosis and hepatocellular carcinoma

    Intermittent High Glucose Elevates Nuclear Localization of EZH2 to Cause H3K27me3-Dependent Repression of KLF2 Leading to Endothelial Inflammation

    No full text
    Epigenetic mechanisms have emerged as one of the key pathways promoting diabetes-associated complications. Herein, we explored the role of enhancer of zeste homolog 2 (EZH2) and its product histone 3 lysine 27 trimethylation (H3K27me3) in high glucose-mediated endothelial inflammation. To examine this, we treated cultured primary endothelial cells (EC) with different treatment conditions—namely, constant or intermittent or transient high glucose. Intermittent high glucose maximally induced endothelial inflammation by upregulating transcript and/or protein-level expression of ICAM1 and P-selectin and downregulating eNOS, KLF2, and KLF4 protein levels. We next investigated the underlining epigenetic mechanisms responsible for intermittent hyperglycemia-dependent endothelial inflammation. Compared with other high glucose treatment groups, intermittent high glucose-exposed EC exhibited an increased level of H3K27me3 caused by reduction in EZH2 threonine 367 phosphorylation and nuclear retention of EZH2. Intermittent high glucose also promoted polycomb repressive complex-2 (PRC2) assembly and EZH2′s recruitment to histone H3. Abrupt enrichment of H3K27me3 on KLF2 and KLF4 gene promoters caused repression of these genes, further supporting endothelial inflammation. In contrast, reducing H3K27me3 through small molecule and/or siRNA-mediated inhibition of EZH2 rescued KLF2 level and inhibited endothelial inflammation in intermittent high glucose-challenged cultured EC and isolated rat aorta. These findings indicate that abrupt chromatin modifications cause high glucose-dependent inflammatory switch of EC

    Synthesis and anti-angiogenic activity of benzothiazole, benzimidazole containing phthalimide derivatives

    No full text
    Benzothiazole and benzimidazole containing phthalimide derivatives (NK037, NK041, NK042, NK0139A and NK0148) have been synthesized and their anti-angiogenic activity was evaluated using ex vivo egg yolk angiogenesis model. A comparative study with pure thalidomide (NKTA) has also been performed to describe the efficacy of these derivatives in blocking angiogenesis. NK037, NK041 and NK042 were equally potent in blocking egg yolk angiogenesis and the anti-angiogenesis effect was higher than NKTA suggesting the efficacy of these three derivatives in blocking angiogenesis when compare to control. Other two derivatives NK0139A and NK0148 showed effect less than NKTA and stronger than control in ex vivo angiogenesis

    Everolimus is a potent inhibitor of activated hepatic stellate cell functions in vitro and in vivo , while demonstrating anti-angiogenic activities

    No full text
    Progression of liver fibrosis to HCC (hepatocellular carcinoma) is a very complex process which involves several pathological phenomena, including hepatic stellate cell activation, inflammation, fibrosis and angiogenesis. Therefore inhibiting multiple pathological processes using a single drug can be an effective choice to curb the progression of HCC. In the present study, we used the mTOR inhibitor everolimus to observe its effect on the in vitro activation of hepatic stellate cells and angiogenesis. The results of the present study demonstrated that everolimus treatment blocked the functions of the immortalized human activated hepatic stellate cell line LX-2 without affecting the viability and migration of primary human stellate cells. We also observed that treatment with everolimus (20 nM) inhibited collagen production by activated stellate cells, as well as cell contraction. Everolimus treatment was also able to attenuate the activation of primary stellate cells to their activated form. Angiogenesis studies showed that everolimus blocked angiogenesis in a rat aortic ring assay and inhibited the tube formation and migration of liver sinusoidal endothelial cells. Finally, everolimus treatment reduced the load of tumoral myofibroblasts in a rat model of HCC. These data suggest that everolimus targets multiple mechanisms, making it a potent blocker of the progression of HCC from liver fibrosis

    Shear stress promotes nitric oxide production in endothelial cells by sub-cellular delocalization of eNOS: A basis for shear stress mediated angiogenesis

    No full text
    This study aims to investigate the role of shear stress in cellular remodeling and angiogenesis with relation to nitric oxide (NO). We observed a 2-fold increase in endothelial cell (EC) migration in relation to actin re-arrangements under 15 dyne/cm2 shear stress. Blocking NO production inhibited the migration and ring formation of ECs by 6-fold and 5-fold, respectively under shear stress. eNOS-siRNA knockdown technique also ascertained a 3-fold reduction in shear stress mediated ring formation. In ovo artery ligation model with a half and complete flow block for 30 min showed a reduction of angiogenesis by 50% and 70%, respectively. External stimulation with NO donor showed a 2-fold recovery in angiogenesis under both half and complete flow block conditions. NO intensity clustering studies by using Diaminofluorescein diacetate (DAF-2DA) probed endothelial monolayer depicted pattern-changes in NO distribution and cluster formation of ECs under shear stress. Immunofluorescence and live cell studies revealed an altered sub-cellular localization pattern of eNOS and phospho-eNOS under shear stress. In conclusion, shear-induced angiogenesis is mediated by nitric oxide dependent EC migration

    Evaluation of interleukin-33 & sST2 levels in type-2 diabetic mellitus patients with or without metabolic syndrome

    No full text
    Background & objectives: Diabetes mellitus (DM) is characterized by increase in blood glucose levels due to defective insulin secretion or insulin sensitivity. Interleukins (ILs) are known to play an important role in the pathogenesis of DM. The aim of this study was to investigate the serum concentration of IL-33 and its receptor soluble ST2 (sST2) in patients with diabetes and draw a correlation between their serum levels and different standard glycaemic indices of patients affected with type-2 diabetes with or without metabolic syndrome. Methods: Thirty type-2 diabetic individuals and 30 healthy controls were recruited for this study. Serum and plasma were separated by centrifugation of blood for quantitative measurement of IL-33, sST2 and other biochemical parameters. Results: It was observed that serum IL-33 levels were significantly less and sST2 levels were significantly high in type-2 diabetic individuals as compared to healthy controls. A significant correlation between the serum IL-33 concentration and fasting plasma glucose (FPG) and postprandial plasma glucose (PPG) levels were also found. Additionally, data also elucidated that serum levels of high-density lipoprotein, low-density lipoprotein or triglyceride in type-2 diabetics did not influence the serum levels of IL-33 and sST2, thereby excluding these factors as the major drivers of changes in serum IL-33 and sST2 concentration. Interpretation & conclusions: This study demonstrated alteration in serum levels of IL-33 and sST2 in type-2 diabetic individuals. Further mechanistic studies, focusing on the progression of type-2 diabetes could elucidate the involvement of IL-33 in the cellular acquisition of insulin resistance as observed in type-2 diabetics

    Effect of ischemic vascular bed driven secondary ischemia on EC.

    No full text
    <p>(A) The number of round and normal cells were counted from the bright field images. Data were normalized by counting the total number of cells per field and presenting it as percentage of cell. **P<0.001 versus non-ischemic. (n = 7) (B) Number of normal cells were counted from each field and plotted as percentage of normal cells. Ischemia induced reduction in normal cell number was calculated while reversibility was observed when the cells kept back on normal vessels. **P<0.001 versus preischemic and <sup>ψψ</sup>P<0.001 versus postischemic. (n = 7). (C) Apoptosis was measured in ischemia treated EC using annexin-V FITC detection kit. The total number of cells and the number green positive cells per field were counted and plotted. Images are the representative of 3 individual experiments. **P<0.001 versus non-ischemic. (n = 3) (D) Cellular viability under ischemia treatment was measured using trypan blue dye. Trypan blue stained cells were taken as dead cells. The total number of cells and the number green positive cells per field were counted and plotted. Images are the representative of 7 individual experiments. **P<0.001 versus non-ischemic. (n = 7).</p
    corecore